ANSWERS TO IGCSE EXAMS

In

PHYSICS

for

PAPER 3

Of

MAY/JUNE SESSION 2001

By
Ramadan K. Abu-Msameh
http:// ramadan.50megs.com

Ramadan K. Abu-Msameh
http:// ramadan.50megs.com
Centre Number Candidate

Candidate Name \qquad

International General Certificate of Secondary Education UNIVERSITY OF CAMBRIDGE LOCAL EXAMINATIONS SYNDICATE PHYSICS
 0625/3

PAPER 3

MAY/JUNE SESSION 2001
1 hour 15 minutes
Candidates answer on the question paper.
No additional materials required.

TIME 1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page.
Answer all questions.
Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

FOR EXAMINAR'S USE	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

This question paper consists of 14 printed pages and 2 blank pages.
SB CW/KN) 0F10310/2
© UCLES 2001 Turn over
(1) Fig. 1.1 shows the speed of a small, very dense object which is falling vertically from an aeroplane, up to the point at which it hits the ground. The air resistance on the object is negligibly small for the first 5 s of its fall. The object is fitted with a parachute which springs open after a certain time of fall.

(a) State the type of motion
(i) between 0 and 5 s , The motion is a uniform motion with constant acceleration.
(ii) between 42s and 47s.

The motion fas a constant speed with no acceleration
(b) Estimate the time at which the parachute opens.

The time is 20 seconds
(c) On Figs 1.2 and 1.3, indicate by labelled arrows the vertical forces acting on the falling object
(i) after 3 s of fall,

Fig. 1.2
(ii) after 45 s of fall.

Fig. 1.3
(d) State whether or not there is a resultant vertical force acting on the falling object
(i) after 3 s of fall,

Yes. There is a resultant force in this period due to the acceleration of the object
(ii) after 45 s of fall.
\mathcal{N}. There is not a resultant force in this period because it reached it terminal velocity
(e) Calculate the distance fallen in the firsts 5 s of fall.

$$
\text { Distance }=\operatorname{are} a=1 / 26 \text { ase } \times \operatorname{he} \text { ight }=1 / 2 \times 5 \times 49=122.5 \mathrm{~m}
$$

2 Fig. 2.1 shows a moving car on a level road.

Fig. 2.1
(a) Calculate the momentum of the car.

$$
\begin{align*}
& p=m v=800 \mathrm{~kg} \times 20 \mathrm{~m} / \mathrm{s}=16000 \mathrm{Kg} \cdot \mathrm{~m} / \mathrm{s} \\
& \text { momentum of car }=16000 \mathrm{Kg} \cdot \mathrm{~m} / \mathrm{s}
\end{align*}
$$

(b) The brakes of the car are applied for 4 s , which reduces the speed of the car to $5 \mathrm{~m} / \mathrm{s}$.
(I) Calculate the average force of the brakes.
$\mathcal{F}=\Delta p / \Delta t=m\left(\mathcal{V}_{2}-\mathcal{V}_{1}\right) / t=800 \times(20-5) / 4=3000 \mathcal{N}$
average force $=3000 \mathcal{N}$
(ii) Calculate the average deceleration of the car.

$$
\begin{array}{r}
a=f / \mathrm{m}=3000 / 800=3.75 \mathrm{~m} / \mathrm{s}^{2} \\
\quad \text { average deceleration }=3.75 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

3 Describe an experiment to find the average density of a small rock sample of approximately 100 g mass.
(a) In the space below draw a labelled diagram of the apparatus.

(b) List all the measurements which must be taken.

- Volume of water before placing the stone in measuring cylinder $\left(\mathcal{V}_{1}\right)$
- Volume of water after placing the stone in measuring cylinder $\left(\mathcal{V}_{2}\right)$
(c) Explain how to work out the average density from the measurements taken.
- Volume of rock $V_{\text {rock }}=\mathcal{V}_{2}-V_{1}$
- Density=mass $/$ volume $=100 \mathrm{~g} / \mathcal{V}_{\text {rock }}$

4 Fig. 4.1 shows a very magnified view of tiny dust particles suspended in still air, as seen under a microscope.

Fig. 4.1
(a) In the space below, draw a diagram to show how the particle labelled P would move when it is observed for a short time.

(b) With reference to dust particles and air molecules, explain the movement which you have drawn.
The relatively large dust particles are surrounded by much smaller and faster air molecules. Air molecules bombard the dust particles randomly from all directions causing the dust particles to move randomly in zigzag motion.
(c) Describe and explain how the movement would change if the temperature of the air in the container increased.
When the temperature increases, the air molecules gain kinetic energy and move faster and thus strike the dust particles more frequently and with greater force, causing a fast changing zigzag motion. Also they will strike the container wall more frequently and with greater force.

5 Fig. 5.1 shows apparatus which may be used to find the specific heat capacity of a liquid.

Fig. 5.1
The readings taken are: power of the heater,

50W time heater is switched on, 600s initial temperature of the liquid, $20^{\circ} \mathrm{C}$ final temperature of the liquid, mass of the liquid heated, $65^{\circ} \mathrm{C}$ 200 g
(a) Use the data to calculate the specific heat capacity of the liquid.

$$
\begin{aligned}
& \mathcal{H}=\operatorname{cm}\left(\mathcal{T}_{2}-\mathcal{T}_{1}\right), \mathcal{H}=\mathcal{P}_{t} \\
& c=\mathcal{P t} / m\left(\mathcal{T}_{2}-\mathcal{T}_{1}\right)=50 \mathrm{w} \times 600 \mathrm{~s} /\left(200 \mathrm{~g} \times(65-20)^{\circ} \mathrm{C}\right)=3.33 \mathrm{~g} / \mathrm{g}^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\text { specific heat capacity }=3.33 \mathrm{~g} / g^{\circ} \mathrm{C}
$$

(b)
(i) Explain why the value obtained from this data will be higher than the actual value.
This is because of heat lost to the surroundings such as the container, the air around it, the thermometer, stirrer, ..etc. Due to this heat lost, the rise in the temperature $\left(\mathcal{T}_{2}-\mathcal{T}_{1}\right)$ is smaller than it should be. Hence, the calculated value for "C" is greater than the true value.
(ii) Describe one addition to the apparatus which would make the calculated experimental value nearer to the actual value.
$\mathcal{B y}$ adding lagging to the glass beaker. This lagging will minimize heat lost to surrounding and keep $\left(\mathcal{T}_{2}-\mathcal{T}_{1}\right)$ close to the actual value and hence the calculated value of "c" would be much close to actual value.

6 Fig. 6.1 shows some apparatus in use in an experiment to find the critical angle for blue light.

Fig. 6.1
The ray hits the prism at point "P" then crosses the prism to point "Q". Part of the ray emerges along the surface "QR" as shown.
(a) (i) By using measurements taken from the diagram, find the critical angle of the glass for blue light.

(ii) Use your value to explain how total internal reflection of blue light could be made to occur at point Q .
Total internal reflection occurs when the incident angle of blue light at point " Q " is always greater than the critical angle of the prism.
(c) Using measured angles on the diagram, calculate the refractive index of the glass for blue light.

```
Sin(critical angle )=1/n
n=1/S in(critic al angle)=1/S in(41)=1.52
```

refractive index $=1.52$

7 Fig. 7.1 shows an unlabelled diagram which a teacher draws to represent a sound wave in air.

Fig. 7.1
(a) What label should be put on the line with the arrow?

Direction of sound wave travel
(b) (I) What does the uneven spacing of the lines show?

It shows compressions and rarefactions in the surrounding medium resulting from sound wave.
(ii) What is being shown at P ?

It shows rarefactions in the surrounding medium resulting from sound wave.
(iii) What is being shown at Q ?

It shows compressions in the surrounding medium resulting from sound wave.
(d) Describe the motion of an air particle at R .
$\mathcal{A t}$ "R" the particle will vibrate forizontally due to longitudinal nature of found waves.
(e) From Fig. 7.1, measure the wavelength of the sound wave.

$$
\begin{equation*}
\text { wavelength }=4.1 \mathrm{~cm} \tag{1}
\end{equation*}
$$

8 (a) Fig. 8.1 shows a coil of thin wire and a lamp connected to a 4 V supply.

Fig. 8.1
The lamp is marked $1.5 \mathrm{~V}, 0.6 \mathrm{~W}$. The lamp lights at normal brightness. Calculate
(I) the current in the lamp,

$$
\begin{aligned}
& \mathcal{P}=I \mathcal{V} \\
& I=\mathcal{P} / \mathcal{V}=0.6 / 1.5=0.4 \mathcal{A}
\end{aligned}
$$

$$
\text { current }=0.4 \mathcal{A}
$$

(ii) the resistance of the lamp,
$\mathcal{P}=\mathcal{V}^{\mathcal{V}} / \mathcal{R}$
$\mathcal{R}=\mathcal{V}^{2} / p=1.5^{2} / 0.6=3.75 \mathrm{ohms}$
resistance $=3.75$ ofms
(iii) the charge flowing through the lamp in 20s.
$I=Q / t, Q=I \quad t=0.4 \times 20=8$ coulombs
charge $=8$ coulombs
(b) The resistance of the coil of wire shown in Fig. 8.1 is 6.2Ω and its length is 1 m . Using only 1.0 m lengths from the same reel of wire, and without cutting any of them, state how you would produce a resistance of
(i) 3.1Ω,

Connect two coils in parallel. Because, $\mathcal{R}_{\text {eq }}=6.2 \times 6.2 / 12.4=3.1$ ofms (ii) 12.4Ω.

Connect two coils in series. Because, $\mathcal{R}_{e q}=2 \times 6.2=12.4$ ofms
Complete the circuits in Fig. 8.2 and in Fig. 8.3 to show how the lengths of wire are connected in each case.

Fig. 8.2

Fig. 8.3
(c) In a similar circuit to that shown in Fig. 8.1, the resistance of the coil is 5.0Ω and the current through it is 0.6 A . Calculate the heat energy produced in the coil in 20 s .
$\mathcal{E}=p t=I^{2} R\left(=0.6^{2} \times 5 \times 20=36\right.$ joules

$$
\text { energy }=36 \text { joules } \text { [3] }
$$

9 Fig. 9.1 shows a transformer.

Fig. 9.1
(a) Explain
(i) why a secondary output is obtained even though there is no electrical connection between the primary and secondary coils,
Because the 240 V A.C. input voltage produces a varying magnetic field around the primary coil which is focused by the core to pass through and cut the turns of the secondary coil resulting in a charges movement through the coil that induces the emf of 12 V A.C. in secondary coil.
(ii) why there would be no output voltage if the primary coil were connected to a 240 V d.c. supply.
Because a $240 V$ D.C. input voltage produces a non-varying magnetic field around the primary coil.
(b) The transformer is assumed to be 100% efficient.
(I) There are 100 turns on the secondary coil. How many turns are there on the primary
coil?
$\mathcal{V}_{p} / \mathcal{V}_{s}=\mathcal{N}_{p} / \mathcal{N}_{s}$
$\mathcal{N}_{s}=\mathcal{N}_{p} \mathcal{V}_{p} / \mathcal{V}_{s}=100 \quad 12 / 240=5$ turns
turns on the primary $=5$ turns
(ii) The output current is 4.0 A . Calculate the input current.
$I_{p} \mathcal{V}_{p}=I_{s} \mathcal{V}_{s}$
$I_{p}=I_{s} \mathcal{V}_{s} / \mathcal{V}_{p}=4 \quad 12 / 240=0.2 \mathcal{A}$
input current $=0.2 \mathcal{A}$

10 (a) Complete the following table for a-particles. The first answer has been given.

property/nature	complete this column
symbol	${ }_{2}^{4} \mathrm{He}$
Mass number	4
Charge	$+2 p$ (p: proton charge)
Ionization of gases	Strong
Deflection in Magnetic field	Right angles to the magnetic field lines
Deflection in electric field	Toward negative

(hint: it is a helium nucleus)
(hint: write down the number of proton charges)
(hint: choose from: strong, weak or almost none)
(hint: choose from: towards N , towards S or at right angles to the magnetic field lines)
(hint: choose from: towards +ve, towards -ve or no deflection)
(b) Fig. 10.1 shows the paths of a-particles scattered by the nuclei of metal atoms in thin foils.

Fig. 10.1
Explain what can be deduced from the paths shown in Fig. 10.1 about
(I) the mass of the nucleus of a metal atom compared to the mass of an α-particle,

The mass of the nucleus of the metal is greater than the mass of the α-particle.
(ii) the charge on the nucleus of a metal atom,

The charge on metal nucleus is same as charge of $\boldsymbol{\alpha}$-particle
(iii) the volume occupied by a metal atom compared to its nucleus.

The volume of the metal atom is much grater that than the volume occupied by the metal nucleus.

